
Solar Physics
DOI: 10.1007/•••••-•••-•••-••••-•

Effect of Nonlinear Surface Inflows into Activity
Belts on Solar Cycle Modulation

Mohammed H. Talafha1,2 · Kristóf
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Abstract Converging flows are visible around bipolar magnetic regions (BMRs)
on the solar surface, according to observations. Average flows are created by these
inflows combined, and the strength of these flows depends on the amount of flux
present during the solar cycle. In models of the solar cycle, this average flow can
be depicted as perturbations to the meridional flow. In this article, we study the
effects of introducing surface inflow to the surface flux transport models (SFT)
as a possible nonlinear mechanism in the presence of latitude quenching for an
inflow profile whose amplitude varies within a cycle depending on the magnetic
activity. Using a grid based on one-dimensional SFT models, we methodically
investigated the extent of nonlinearity caused by inflows, latitude quenching
(LQ), and their combinations. The results show that including surface inflows in
the model in the presence of both LQ and tilt quenching (TQ) produced a polar
field within a ±1σ of an average cycle polar field (σ is the standard deviation)
and a correlation coefficient of 0.85. We confirm that including inflows produces
a lower net contribution to the dipole moment (10 – 25%). Furthermore, the
relative importance of LQ vs. inflows is inversely correlated with the dynamo
effectivity range (λR). With no decay term, introducing inflows into the model
resulted in a less significant net contribution to the dipole moment. Including
inflows in the SFT model shows a possible nonlinear relationship between the
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surface inflows and the solar dipole moment, suggesting a potential nonlinear
mechanism contributing to the saturation of the global dynamo. For lower λR

(⪅ 10 ◦), TQ always dominates LQ, and for higher λR LQ dominate. However,
including inflows will make the domination a little bit earlier in case of having
a decay term in the model.

Keywords: Magnetic fields, Models; Magnetic fields, Photosphere; Magnetohy-
drodynamics; Solar Cycle, Models.

1. Introduction

Solar dynamo models describe the evolution of solar cycles over time, with
poloidal and toroidal fields as the main components in a Babcock-Leighton
(BL) dynamo model. Poloidal fields wind up by differential rotation to form
the toroidal fields of the next cycle, and the toroidal field serves as seeds for the
poloidal field (Bhowmik et al. 2023). Surface flux transport models (SFT) have
been used to describe these large-scale photospheric magnetic fields’ evolution
by assuming that the surface field is nearly radial. Its evolution can be repre-
sented by the radial component of the magnetohydrodynamics (MHD) induction
equation, where advection is attributed to differential rotation and poleward
meridional flow and diffusion to the mixing action of supergranular flows (Yeates
et al. 2023). The reversal of the polar field and solar dipole moment in the middle
of the activity cycles originates from the systematic latitude-dependent tilt of
the active regions (ARs) relative to the azimuthal direction (Joy’s law) and
can be reproduced by the SFT. In addition, Schrijver, De Rosa, and Title (2002)
introduced a decay term to solve the problem of dipole moment drift. SFT models
were used in literature for simulating and modelling the solar magnetic field
(Cameron et al. 2012; Cameron and Schüssler 2016; Jiang et al. 2011; Whitbread
et al. 2017); in addition to solar cycle prediction (Jiang et al. 2018; Iijima et al.
2017; Jiang 2020; Petrovay 2020), a recent review of the model given by Yeates
et al. (2023).

The generation of the toroidal magnetic field is linearly linked to the strength
of the poloidal field during the minimum of the previous cycle (Jiang et al. 2018).
However, it is anticipated that the transformation of the toroidal field into the
poloidal field through the BL mechanism is a nonlinear process, which plays a
significant role in the amplified growth of amplitude and variability of the solar
cycle.

The tilt angle of the sunspot group plays a vital role in the formation of
the poloidal field generated by the toroidal field through the BL mechanism.
As a sunspot group develops across the solar surface, its tilt angle changes over
time. Analysing its characteristics at various stages of evolution provides insight
into the physical origins of tilt angles. According to the thin flux-tube model
of BMR formation, the tilt is thought to result from the Coriolis force acting
on the rising flux tube of the strong toroidal magnetic field originating at the
base of the convection zone (Jha et al. 2020). The scatter in the tilt angle arises
from two factors, one of which is the generation mechanism of the tilt angle,
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Effect of Surface Inflows

potentially influenced by turbulent convection. The other factor contributing to
tilt angle scatter is measurement errors, such as those arising from measure-
ments conducted in unipolar regions. Studying tilt angles aids in uncovering the
mechanisms behind the randomness of the solar cycle and provides insights into
flux tube emergence (Jiao, Jiang, and Wang 2021).

The thin-flux-tube approximation theory posits that as the field strength rises,
there is a decrease in tilts, which implies a nonlinear feedback mechanism that
affects the efficiency of the BL mechanism (D’silva and Choudhuri 1993). Dasi-
Espuig et al. (2010) conducted a study that revealed a noteworthy association
between the average tilt of bipolar active regions and the amplitude of the solar
cycle. This correlation, commonly referred to as tilt-quenching (TQ), has been
widely incorporated into solar dynamo models. Importantly, they found that
the product of the mean tilt and cycle amplitude was a reliable predictor of the
amplitude of the subsequent solar cycle. This finding holds significance in the
context of understanding and forecasting solar activity dynamics. This correla-
tion was confirmed by Jiao, Jiang, and Wang (2021) through a comprehensive
examination of the existing methodologies employed to estimate tilt angles us-
ing data from the Kodaikanal and Mount Wilson observatories. In addition,
the tilt angles from the Debrecen photoheliographic dataset were incorporated
into the analysis. Meticulous analysis revealed a significant inverse correlation
between the tilt angles and the strength of the solar cycle. Using line-of-sight
magnetograms obtained from the Michelson Doppler Imager (MDI) aboard the
Solar and Heliospheric Observatory (SOHO) covering the period 1996-2011, as
well as the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamic
Observatory (SDO) from 2010 to 2018. Jha et al. (2020) investigated the tilt
characteristics of Bipolar Magnetic Regions (BMRs) within a solar cycle and
demonstrated that the tilt of BMRs exhibits a nonmonotonic relationship with
the field strength of the region. Specifically, the tilt angle increased in the small
magnetic field regime, whereas it decreased in the large magnetic field regime.

The efficiency of poloidal field generation by BMRs diminishes when they
emerge at higher latitudes, mainly because of the limited cross-equatorial can-
cellation (Jiang et al. 2014). Cross-equatorial transport is indispensable for the
buildup of the new poloidal field in the Babcock-Leighton scenario. Without
cross-equatorial transport, there would be simply no polar reversal, and no new
cycle would follow (Petrovay 2020). For clarification, the cross-equatorial trans-
port discussed in this article is not related to the positions or proper motions
of ARs: it is a diffusive transport of the large-scale mean-field, for which direct
evidence would be hard to find. The overall agreement of the evolution of the
large-scale solar magnetic field with SFT model predictions is, however, strong
indirect evidence for cross-equatorial transport (Yeates et al. 2023). However,
when a BMR emerges in proximity to the equator, the process of cancelling out
the leading polarities with a flux of opposite polarity from the other hemisphere
is facilitated. Jiang (2020) directed attention towards ”latitude quenching” (LQ),
as this nonlinear modulation mechanism is coined by Petrovay (2020). The LQ
was derived from an empirical observation made through extensive analysis of
a long sunspot record, revealing a correlation between the average latitude of
the active region appearance during a specific phase of the solar cycle and the
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amplitude of the cycle (Jiang et al. 2011). The presence of active regions at
higher latitudes hampers the diffusion of the leading flux across the equator,
consequently reducing the contribution of the trailing flux to polar fields. Conse-
quently, the observed negative correlation between the average latitude of active
region emergence and the cycle amplitude signifies the presence of a negative
feedback effect. Karak (2020) argued that LQ can effectively govern the growth of
the magnetic field, particularly when the dynamo operates within a moderately
supercritical regime, by incorporating this concept into a 3D Babcock–Leighton
dynamo model using a straightforward latitude-dependent threshold for BMR
eruption.

Talafha et al. (2022) conducted a comprehensive investigation to assess the
influence of the two potential nonlinearities, TQ and LQ, on the source term in an
SFT model systematic simulation. Both TQ and LQ serve as plausible saturation
mechanisms that explain the absence of the runaway exponential growth in the
solar dynamo. The study revealed that the relative impact of TQ versus LQ
on the axial dipole at the end of the solar cycle is primarily determined by the
dynamo effectivity range λR, defined as a universal function of ∆u/η, where
∆u is the divergence of the meridional flow at the equator and η represents the
diffusivity; Eqs. (26) and (27) in Petrovay, Nagy, and Yeates (2020). Specifically,
when λR is small, LQ exhibits a greater reduction in the end-of-cycle axial dipole
than TQ. Conversely, for large values of λR, TQ is more influential than LQ in
diminishing the end-of-cycle dipole.

Observations on the solar surface reveal the presence of converging flows
surrounding BMRs (Gizon, Duvall, and Larsen 2001; González Hernández et al.
2008). These inflows collectively generate average flows around the activity belt,
and their intensity is contingent on the level of flux within the solar cycle, as
demonstrated by Jiang et al. (2010) and Cameron and Schüssler (2012). The
average poleward meridional flow experiences a modest change of approximately
25% between the maximum and minimum phases of the solar cycle, or from one
cycle to another (Komm, Howard, and Harvey 1993; Hathaway and Rightmire
2010). This variation is attributed, at least in part, to surface inflows directed to-
wards large active regions (Gizon 2004; Cameron and Schüssler 2010; Jiang et al.
2010). These inflows can reach a substantial fraction of the mean axisymmetric
poleward meridional flow at mid-latitudes, but their spatial extent remains con-
fined to the belts where the active regions are located. The magnetic influence on
surface flows can induce variations in the transportation of magnetic flux towards
the pole, consequently affecting the dynamo efficiency of decaying bipolar active
regions. This alteration leads to a reduction in the cross-equatorial cancellations
of BMRs and suppresses the effectiveness of the Babcock–Leighton process. In
the case of a strong solar cycle, this effect becomes more pronounced and imparts
a stabilising influence on the dynamo, as demonstrated by Martin-Belda and
Cameron (2017) and Nagy, Lemerle, and Charbonneau (2020).

This study aims to investigate how surface inflows towards active-region belts
affect solar cycle modulation as a quenching mechanism for the solar dynamo. In
particular, we employ the model formulation introduced by Jiang et al. (2010)
and its subsequent modifications in Nagy, Lemerle, and Charbonneau (2020) by
imposing axisymmetric bands of converging latitudinal flow as perturbations
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of meridional flow. The novelty in the current paper is the addition of the
meridional inflow as opposed to either TQ or LQ .

The remainder of this paper is organized as follows. In Section 2, we provide
a detailed description of the SFT model used in this study and describe the
surface inflow profile that we use. The results of our solar cycle simulations are
then presented in Section 3, regarding the modified surface inflows profile (Nagy,
Lemerle, and Charbonneau 2020). The discussion is given in Section 4, and the
paper is concluded in Section 5.

2. Modulation of Surface Inflows in a Surface Flux Transport
Model

To investigate how surface inflows affect one-dimensional (1D) SFT models with
the LQ mechanism, we used the results of Petrovay and Talafha (2019) (hereafter
Paper 1) as the optimised combinations of model parameters and Talafha et al.
(2022) (hereafter Paper 2) as the parameter values for LQ.

As we modelled the ”average” solar cycles in papers 1 and 2, the source
function is a smooth distribution that can be regarded as an ensemble average.
This allowed us to simulate the probability distribution of the emergence of
leading and trailing polarity on the solar surface. Because this source is axially
symmetric, our entire SFT model can be simplified to one dimension, as shown
in Equation 1.

∂B

∂t
=

1

R cosλ

∂

∂λ
(B u cosλ)

+
η

R2 cosλ

∂

∂λ

(
cosλ

∂B

∂λ

)
− B

τ
+ s(λ, t) (1)

Where u is the meridional flow speed, τ is the timescale of decay due to ra-
dial diffusion, R is the solar radius, and η is the supergranular diffusivity. The
meridional flow profile used in this work is within the observational constraints.
In principle, dynamical models of meridional circulation might also be used;
however, these also involve numerous ad hoc assumptions. For example, the
recent numerical simulations by Finley et al. (2024) apply an arbitrary rescaling
of the Nusselt number, given the convective conundrum, and they neglect the
magnetic feedback. For our study, a dynamic model would be an unnecessary
complication that would not make the flow pattern more unique.

The source term s represents flux emergence by a general form of ring pairs
with opposite magnetic polarity, as described by Talafha et al. (2022); in this
work, we only considered the LQ effects (i.e., the bjoy parameter is equal to
zero).

As explained in detail in the recent review by Yeates et al. (2023), the SFT
equation is the radial component of the magnetic induction equation at the
surface where the radial diffusion term is either neglected or represented in a
simplified way (decay term with parameter in τ our case). A more realistic form
for this term was given by Baumann et al. (2004). According to one widely
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held view, the strong downwards-directed pumping in the shallow layers may
make this contribution insignificant (see Ossendrijver et al. (2002); Käpylä et al.
(2006), and references therein). Apart from this simplification, the SFT equation
is exact. Radial flows have no direct relevance to the redistribution of the radial
magnetic field on the solar surface.

Surface inflows were added as perturbations to the meridional flow ∆v(λ, t)
as the axisymmetric parametric form introduced by Jiang et al. (2010), but their
amplitude varies over time within a cycle depending on the magnetic activity
(Nagy, Lemerle, and Charbonneau 2020). In a full non-axisymmetric model,
the inflows should be centred on individual active regions. As, however, our
study focuses on solar cycle modulation, which is determined by the axial dipole
moment built up by the end of the cycle, it is sufficient in this work to consider
the azimuthally averaged SFT equation. The assumed latitudinal inflows result
from the azimuthal averaging of the actual radial inflows towards ARs; hence,
their amplitude is expected to scale with the number of ARs present and their
time scale is comparable to the cycle length. Just as the time scale of the source
term s is the cycle time rather than the lifetime of individual ARs. For the
specific form (Equation 3) used for the scaling and the value of the amplitude
parameter v00, we follow Nagy, Lemerle, and Charbonneau (2020)

∆v(λ, t) =

{
−v0 sin(

λ−λ0(t)
δλ ) if − π < λ−λ0(t)

δλ < π
0 otherwise

(2)

Here, the velocity amplitude of the bands v0(t) is calculated as follows:

v0(t) = v00 · arctan
(

Sn

F00

)
(3)

Sn is the scaled cycle amplitude and F00 = 4.99 × 10−21, is an arbitrary
normalisation parameter, the initial amplitude of the inflows, v00 = −500 and
−750 cm s−1. The dependence of the arctangent in Equation 3 prohibits un-
reasonably high inflow speeds for rogue BMR emergencies (Nagy et al. 2017).
In these bands, δλ is the width of the bands, and λ0 is its central latitude. We
obtain another band in the opposite hemisphere by substituting λ0 → −λ0. For
sufficiently small central latitudes, the two bands can overlap, and the corre-
sponding velocities are added. The temporal dependency of λ0(t; i), Equation 4,
represents the equatorward travel of the bands during the solar cycle. The width
of the bands δλ follow the standard deviation in Equation 5

λ0(t; i)[
◦] = [26.4− 34.2(t/P ) + 16.1(t/P )2](λi/14.6) (4)

δλ = [0.14 + 1.05(t/P )− 0.78(t/P )2]λ0 (5)

where P = 11 year is the cycle period. From the point of view of our axisymmetric
model, what matters is not the tilt angle by itself but the latitude difference
between the leading and trailing polarities. This is not affected by differential
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Effect of Surface Inflows

Table 1. Set of parameters considered for inflows with the Surface
inflows whose amplitudes vary within a cycle depending on the mag-
netic activity and its deviations |∆Dn| of the nonlinear models from
the linear case measured at a certain SSN value. The surface inflow
initial amplitude v00 = −500 cm s−1.

Case u0 η τ dev devLQ dev

[m s−1] [km2s−1] [yr] LQ+inflows inflows

a 11 250 8 2.410 1.614 1.149

b 11 350 8 2.874 1.429 1.722

c 11 450 8 3.087 1.083 2.290

d 11 550 8 3.032 0.729 2.337

e 11 650 8 2.956 0.604 2.460

f 11 250 ∞ 2.263 1.422 1.051

g 11 350 ∞ 2.471 1.334 1.389

h 11 450 ∞ 2.372 1.077 1.469

i 11 550 ∞ 2.1621 0.763 1.445

j 11 650 ∞ 2.040 0.637 1.331

rotation. Following usual practice, in our SFT model, the AR source is introduced

instantaneously, and its further evolution is described by the SFT model.

The amplitude of the inflows was scaled to depend on the cycle amplitude

An, as (A0-An)×10. The constant A0 was assigned a value of 0.001 exp(7[yr]/τ)

to ensure that the resulting dipolar moments aligned reasonably well with the

observed values (measured in Gauss) for an average cycle. Note that with this

scale and τ -dependence, defining Sn = χAns1 yields values of Sn comparable

to the observed sunspot numbers (SSN), where χ is a dimensionless parameter

equal to 400 for τ = 8 years and 1000 for τ = ∞, which ensures that the average

Sn is identical to the average observed values.

For the SFT model parameters, our model grid was a subset of the grid

described in Paper 1. For τ , we only consider two values; a decay time scale of

8 years, comparable to the cycle length and supported by several studies (see

Paper 1 and references therein), and a decay time scale of ∞, so no decay term.

The meridional flow amplitude was set to u0 = 11 m s−1, and the initial ampli-

tudes of the inflow were v00 = −500 and −750 cm s−1, across various parameter

combinations as detailed in Tables 1 and 2, respectively. The parameters were

constrained in the range allowed by observations, and within this range, a limited

mapping of the parameter space was performed. These combinations correspond

to two distinct initial inflow amplitudes, as suggested by Nagy, Lemerle, and

Charbonneau (2020). This approach allows us to demonstrate the impact of

surface inflows with higher initial amplitudes.
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Table 2. Same as Table 1, with the initial surface inflow amplitude
v00 = −750 cm s−1.

Case u0 η τ dev devLQ dev

[m s−1] [km2s−1] [yr] LQ+inflows inflows

k 11 250 8 2.024 1.614 0.996

l 11 350 8 2.785 1.429 1.835

m 11 450 8 3.167 1.083 2.413

n 11 550 8 3.14 0.729 2.503

o 11 650 8 3.118 0.604 2.731

p 11 250 ∞ 2.173 1.422 1.062

q 11 350 ∞ 2.557 1.334 1.536

r 11 450 ∞ 2.571 1.077 1.689

s 11 550 ∞ 2.409 0.763 1.682

t 11 650 ∞ 2.381 0.637 1.787

3. Results

As the migrating flow perturbation represents a strong non-uniform latitudinal
variation in the divergence of the flow, the problem at hand does not lend itself
to the simplified analytic treatment applied in Talafha et al. (2022). Hence, the
analytic fits to the results of our numerical exploration of the problem are simply
based on a generalization of the results obtained by Talafha et al. (2022).

To investigate the effect of introducing surface inflows into the model, we first
look into the impact of the surface inflows on the polar field for different setups
(inflows, LQTQ, LQTQ+inflows) and compare it with an average cycle polar
field. After that, we studied the model deviations in the net contribution of a
cycle to the dipole moment |∆Dn| for the three nonlinear scenarios (inflows, LQ
and inflows+LQ) from the linear case (no LQ+ no inflows). Finally, we check
the domination of LQ over TQ in the presence of surface inflows.

3.1. Polar Field for Ten Solar Cycles

The polar field reverses by the end of every solar cycle, a process suggested
by Babcock and Babcock (1955) due to the magnetic flux transport on the
solar surface. Correlation between the polar field at cycle minimum and the
next cycle amplitude maximum confirmed by several studies (Wang and Sheeley
2009; Hathaway and Upton 2016), this makes the polar field a precursor of cycle
strength (Petrovay 2020).

Using the 1D SFT model described earlier, we look into the polar field for
10 solar cycles, considering the two nonlinear mechanisms, Latitude and tilt
quenching (LQ and TQ), in addition to the surface inflows as a possible nonlin-
earity. First, we simulate an average solar cycle as in paper 1, adding both LQ
and TQ to the model as in paper 2 and, finally, including the surface inflows.
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Figure 1. Polar field [G] vs. Time [yr] for 10 average solar cycles (solid blue), including
inflows (dash-dotted orange), latitude and tilt quenching (dotted green) and all of the three
mechanisms to the average cycle (dashed red). A ±1σ of the average cycle is shown as the
shaded area.

Figure 2. Correlation matrix illustrating the relationships between different cases. The matrix
highlights the degree of correlation between parameters of the average cycle, inflows, latitude
and tilt quenching (LQTQ), and combined (LQTQ+Inflows) scenarios. Higher values indicate
stronger correlations, while lower values indicate weaker correlations.

The model parameters considered in this article are based on the optimisation
results in paper 1. For meridional flow amplitude, u0 = 11 m s−1, diffusivity
η was set to 250 km2s−1 and the decay time scale for τ = 8 yr. For latitude
quenching (LQ), the blat parameter was set to 2.4, and for tilt quenching (TQ),
the bjoy parameter was set to 0.15.

The polar field values for different scenarios were calculated, firstly, polar
field values for an average solar cycle, no quenching mechanisms and no inflows
(average cycle), secondly, the average solar cycle with inflows (inflows), a third
scenario to include both LQ and TQ with the average cycle polar field (LQTQ),
and lastly to consider all the mechanisms together (LQTQ+inflows). Figure 1
shows the polar field for 10 solar cycles for these different scenarios with time. A
1 Standard deviation (σ) is shown for the average cycle, the other three scenarios
were nearly laying in between ±σ, except for the last cycle which shows a slight
deviation.

The correlation of the different scenarios with the average solar cycle is shown
in Figure 2, it’s important to say that the LQTQ scenario correlates with the av-
erage cycle by 0.9 factor, however, including the inflows to the model in addition
to LQ and TQ reduces the correlation factor to 0.85.

The polar field for the average solar cycle was fitted to a harmonic function
of the form:

f(t) = (a0 + a1t+ a2t
2) sin (bt+ c) (6)
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Figure 3. Fitting line for polar field vs. time for all mechanisms (LQTQ + inflows) case
included in the model for 10 solar cycles, fitting parameters listed in Table 3

where a0, a1, a2, b and c are fitting parameters. The choice of this form was

selected based on the varying amplitudes of the polar field through the 10 cycles

in addition to its periodic nature. As an example, Figure 3 shows the case where

all of the three mechanisms considered (LQTQ+inflows) in the model, the polar

field values were fitted to the form in Equation 6, the complete list of the fitting

parameters best values for each scenario given in Table 3.

Table 3. Fitting parameters of polar field vs. time for different
cases

Case a0 a1 a2 b c

Average cycle -8.986 -0.407 0.004 0.284 -1.54

LQ -6.404 -0.378 0.003 0.284 -1.543

TQ -10.583 -0.168 0.002 0.281 -1.417

Inflows -14.592 0.282 -0.004 0.28 -1.145

LQTQ -9.296 -0.274 0.002 0.283 -1.453

LQTQ+inflows -11.587 -0.197 0.002 0.282 -1.27

To compare each scenario with the average cycle, we calculate the percentage

error between the fitting parameters of each scenario and the average cycle.

Table 4 shows the percentage error for each parameter in Equation 6. The

”Inflows” scenario consistently shows the largest percentage errors across most

parameters, particularly for a1 (169.29%), a2 (200.00%), and a0 (62.38%), this

proves that the inflows significantly impact the parameters compared to the

other scenarios. The parameter b remains relatively stable across all scenarios,

with the percentage errors being minimal (ranging between 0.00 – 1.41%), which

suggests that b is less sensitive to the variations in the different cases studied. All

scenarios show notable percentage errors in a0, but ”Inflows” shows the largest

positive percentage error; this parameter seems to be highly influenced by the

inclusion of inflows. The combined cases (LQTQ and LQTQ+Inflows) generally

show moderate percentage errors from the average cycle values, this suggests

that the combined effects of Latitude and tilt quenching, as well as inflows, lead

to a more balanced impact on the parameters. There is significant variation in

parameter c, especially for ”Inflows” (25.65%), indicating that the inflow case has

a substantial impact on this parameter, differentiating it from other scenarios.

SOLA: main.tex; 7 April 2025; 0:31; p. 10



Effect of Surface Inflows

Table 4. Percentage error of fitting parameters for different cases
compared to the average cycle.

Case ∆a0(%) ∆a1(%) ∆a2(%) ∆b(%) ∆c(%)

LQ 28.74 7.12 25.00 0.00 0.19

TQ 17.77 58.72 50.00 1.06 7.99

Inflows 62.38 169.29 200.00 1.41 25.65

LQTQ 3.45 32.68 50.00 0.35 5.65

LQTQ+Inflows 28.94 51.60 50.00 0.70 17.53

3.2. Surface Inflows as a Nonlinearity in the SFT Model

The surface inflows can be represented by adding perturbations to the meridional
flow profile. Nagy, Lemerle, and Charbonneau (2020) utilised the model frame-
work proposed by Jiang et al. (2010), introducing modifications to the width and
speed of the inflow to ensure their proportionality to the emerging magnetic flux.
However, in this article, we consider this profile to be dependent on the cycle
amplitude, as described in the previous section. This modification transformed
the inflows into an authentic nonlinear magnetic response mechanism rather
than imposing predetermined latitudinal profiles and inflow speeds.

We aim to obtain a statistically meaningful sample of solar cycles by solving
the azimuthally averaged SFT equation, Equation 1, for 1000 cycles, by varying
the parameters η, τ and v0 as listed in Tables 1 and 2. As an illustration, Figure 4
shows the net contribution of a solar cycle to the solar dipole moment plotted
against the cycle amplitude. This comparison was performed in the presence
and absence of surface inflows. Defining r = e−11/τ (with τ in years), the net
contribution of the cycle n to the change in the dipolar moment is given by
∆Dn = Dn+1 − rDn, where Dn represent the dipole moment for the cycle n at
cycle minimum as defined in paper 2.

TQ was not considered here because it might overestimate the effects of
nonlinearities if both tilt quenching and inflows are incorporated into the surface
flux transport process. The decision to exclude TQ and concentrate on LQ and
inflows was motivated by our hypothesis that inflows may be responsible for
tilt quenching. Inflows could play a significant role in the tilt-quenching process;
larger tilt angles indicate that stronger inflows are required to obtain regular
polar field reversals in SFT models, which brings new constraints on the ampli-
tudes of inflow (Jiao, Jiang, and Wang 2021). Martin-Belda and Cameron (2016)
investigated the role of the converging flows towards a BMR in its evolution and
their impact on the axial dipolar field, they found that the latitudinal separation
of the polarities of the bipolar region is limited by the inflows, resulting in
a reduction of the axial dipole moment of the BMR, and hence, lowers the
contribution of the emerged BMR to the axial dipole moment. Therefore, to
avoid the potential overestimation of nonlinear effects by incorporating both
TQ and inflows into the SFT process, we examined the effects of LQ and inflows
while excluding TQ.
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Figure 4. Net contribution of a cycle to the solar dipolar moment vs. cycle amplitude for the
different cases to the linear case with no quenching. The parameter values were u0 = 11m/s,
η = 250 km2s−1 and τ = ∞ years. inflows are implemented with an initial amplitude
v00 = −500 cm s−1. The dashed and solid vertical lines show the average and twice average
cycle amplitude values respectively, and the horizontal dashed lines show where the twice
average vertical line intersects with each case.

Deviations from the linear case (no inflows + no LQ) were calculated at an
arbitrarily selected value of Sn (approximately twice the mean), as indicated by
the solid vertical line in this figure. Table 1 shows the deviations of the inflows,
LQ, and inflows+LQ from the linear case (no inflows + no LQ), for example, in
Figure 4, devinflows = 7.335-6.285 = 1.051.

The average Smax was set to 150 based on the literature. Therefore, for each
parameter combination, Sn,max was scaled using χ to obtain values comparable
to the observed sunspot number SSN. For various cases (a-t), it is evident that
these deviations are significantly influenced by the selection of u0, η, and τ . The
linear case (no inflows + no LQ) was fitted with a linear function, whereas the
other three cases were fitted with quadratic polynomials following the results in
paper 2.

Including inflows in the model resulted in a decreased net contribution to
the solar dipole moment in all cases, as shown in Figure 4. For both linear and
LQ cases, having inflows in the model diminished the overall cycle contribution
to the solar dipole moment, as indicated by the devinflows and devLQ+inflows in
Tables 1 and 2.

Figure 5 shows the relative importance of LQ vs. inflows for different param-
eter combinations plotted against u0/η and fitted to a quadratic polynomial of
the form:

devLQ/devinflows = c1(u0/η)
2 + c2(u0/η) + c3 (7)

where c1, c2, and c3 are the fitting parameters that depend on τ . Note that the
relative importance of the LQ vs. inflows for τ = 8 is always higher than that
for τ = ∞; that is, with no decay term, inflows will be less significant. Using two
initial inflow amplitudes v00, introducing the surface inflows with v00 = −750
cm s−1 gave lower relative importance of LQ vs. inflows than using v00 = −500
cm s−1 for both τ = 8 and ∞. To assess whether the fitting parameters c1, c2
and c3 differed significantly between the two inflows amplitudes v00 = −500 cm
s−1 and v00 = −750 cm s−1, we conducted paired t-tests for each parameter.
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Figure 5. The relative importance of LQ vs. inflows plotted against the u0/η ratio. Separate
third-degree polynomial fits for the case τ = 8 (solid blue and dashed green) and τ = ∞
(dotted orange and dash-dotted red) are shown for the different parameter combinations listed
in Tables 1 and 2.

The parameters were analyzed under the two values of τ = 8 years and ∞.

Table 5 show the t-statistics and p-values, these results indicate that there are

no significant differences in the fitting parameters c1, c2, and c3 between the two

initial inflows amplitudes for both τ = 8 and τ = ∞. This can be interpreted as

increasing the initial inflow amplitudes produced slightly significant inflows.

Table 5. Paired t-test results for
fitting parameters c1, c2, and c3 com-
paring (v00 = -500 cm s−1) and (v00
= -750 cm s−1) for both τ = 8 [yr]
and ∞.

Parameter t-statistic p-value

c1 -1.60 0.35

c2 1.52 0.37

c3 -0.92 0.53

The dynamo effectivity range λR enabled visualization of the inherent con-

nection between the nonlinearity ratios related to the inflows and λR. where λR

defined by the empirical fit found by Petrovay, Nagy, and Yeates (2020):

λR,fit = g1/2(x = η/R2∆u)λR,limit (8)

with

g(x) = (m1x+ c1){1− tanh[(x− c0)/w]}
+(m2x+ c2){tanh[(x− c0)/w]} (9)
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Figure 6. The relative importance of LQ vs. inflows plotted against the dynamo effectivity
range, λR, for the parameter combinations listed in Tables 1 and 2. Distinct fit to Equation 11
are shown for τ = 8 (solid blue and dashed green ) and τ = ∞ (dotted orange and dash-dotted
red), respectively.

and m1 = 0.0004, m2 = −0.0008, c0 = 200, c1 = 1.18, c2 = 1.42. Note that
∆u is the divergence of the meridional flow at the equator.

∆u =
1

R

du

dλ
|λ=0 (10)

Figure 6 show the relative importance of LQ vs. inflows to λR fitting lines
for both τ = 8 and τ = ∞ and two initial inflows amplitudes, the fitting lines
were structured according to Equation 11, for a higher amplitude of the inflow
v00 = −750 cm s−1, the relative importance of LQ vs. inflows is less significant
for τ =∞. However, for τ = 8 yr, the relative importance of LQ vs. inflows is
slightly higher for low λR.

As a consequence of the inflows, the net flow will become convergent within a
belt of half-width∼ δλ0, centred on λ0. In the absence of diffusion, the fraction f0
of the flux in the source that falls within the convergent belt would be advected
to λ0 and cancelled. Diffusion allows a fraction f1 of this flux to escape from the
convergence belt; therefore, in the final accounting, a fraction f = 1− f0(1− f1)
of the flux escapes cancellation and evolves under the effect of the large-scale
meridional flow and diffusion, essentially unaffected by the inflows. As f1 depends
on the inflow speed, f is modulated by the cycle amplitude. Therefore, the net
effect of inflow modulation is formally reduced to the modulation of the source
term in the SFT model, as in the case of tilt quenching. Therefore, we expect
the effects of inflow modulation to be similar to those of the TQ. In particular,
for cycle amplitudes varying in a smaller range, the resulting modulation of the
source is expected to remain in the linear regime similar to the form of TQ
treated in paper 1, where it was found that the relative importance of LQ and
TQ will scale with the dynamo effectivity range as C1 + C2/λ

2
R. This prompts

us to fit the curves in Figure 3 with the same fitting formulae,

devLQ/devinflows = c1 + c2/(λR)
2 (11)
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Figure 7. The relative importance of LQ vs. TQ from Talafha et al. (2022) (solid blue) and
LQ vs. inflows (dashed orange) plotted against the dynamo effectivity range λR, for τ = 8,
v00 = −750 cm s−1, and parameter combinations as listed in Table 2. Fit lines to a quadratic
polynomial are shown as in Equation 7.

Figure 8. Same as Figure 7 for τ = ∞, v00 = −750 cm s−1, and parameter combinations as
listed in Table 2.

where c1 and c2 are fitting parameters. The fit is almost perfect. Small deviations
are due to numerical errors and may be attributed to the fact that cycle ampli-
tudes vary over a rather wide range; hence, the assumption of linear dependence
of modulation of the source on cycle amplitude is rather crude.

Figure 7 and 8 show a comparison between the relative importance of TQ
vs. LQ from paper 2 and the relative importance of inflows vs. LQ to λR for
τ = 8 years and ∞ respectively. The TQ and inflows exhibit similar behaviour.
However, the relative importance of TQ vs. LQ is always larger than LQ vs.
inflows; this supports our initial hypothesis that inflows may be responsible for
tilt quenching, and hence, considering both will overestimate the effects of the
nonlinearities.

3.3. Domination of LQ over TQ when considering Surface Inflows

To determine the domination of LQ over TQ we solve the azimuthally averaged
SFT equation for 1000 cycles, by varying the parameters η, τ and considering
no inflows in one case; v00 = 0, and with inflows in the second case; v00 = −500
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Table 6. Deviations of TQ and LQ from the linear case (NoQ) for different parameter
combinations for no inflows v00 = 0 and with inflows v00 = −500 cm s−1.

Case v00 = 0 v00 = −500 [cm s−1]

η τ devTQ devLQ [devTQ − devLQ] devTQ devLQ [devTQ − devLQ]

250 8 1.271 1.779 -0.508 0.911 1.051 -0.140

350 8 1.303 1.342 -0.039 1.181 1.148 0.033

450 8 1.447 1.197 0.250 1.260 1.029 0.231

550 8 1.586 0.940 0.647 1.511 1.178 0.333

650 8 1.593 0.845 0.749 1.552 0.962 0.589

250 ∞ 0.979 1.431 -0.452 0.941 1.378 -0.437

350 ∞ 1.099 1.284 -0.185 1.125 1.320 -0.196

450 ∞ 0.938 0.966 -0.028 1.170 1.191 -0.021

550 ∞ 1.121 0.719 0.403 1.203 1.099 0.104

650 ∞ 1.053 0.604 0.449 1.313 0.947 0.367

Figure 9. Difference of the deviations (devTQ−devLQ) plotted against λR for τ = 8 years, fit-
ting lines are plotted of third-degree polynomial, the vertical lines show the points of transition
from TQ to LQ.

[cm s−1], as listed in Table 6. The meridional flow amplitude u0 was set as 11
[m s−1] for all cases.

To investigate the effect of introducing surface inflows on the domination of
LQ over TQ, we studied the model deviations of the two nonlinear scenarios (TQ
and LQ) from the linear case (NoQ) for the net contribution of a cycle to the
dipole moment |∆Dn| with and without inflows. Table 6 shows these deviations
and the differences of the deviations (devTQ − devLQ). The model was run for a
range of values of η ∈ [250 - 650] km2 s−1, and τ ∈ {8,∞}.

Initially, for both values of τ , devTQ is lower than devLQ, which means that
the net contribution of a cycle to the solar dipole moment is higher for TQ and
it dominates over LQ, by increasing the η value the net contribution of a cycle

Figure 10. Same as Figure 9 for τ = ∞.
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to the solar dipole moment for TQ decreases gradually until the LQ dominates
over TQ (at λR = 10.44◦ for τ = 8 and λR = 11.068◦ for τ = ∞). This is shown
in Figures 9 and 10; the vertical lines show the points of the transitions from
TQ to LQ.

Adding inflows to the model reduced the net contribution of a cycle to the
solar dipole moment and this sped up the domination of LQ over TQ for τ = 8
years (at λR = 10.095◦), this can be attributed to the presence of inflows, having
inflows in the SFT model reduces the flux transport toward the poles which
will reduce the tilt angle and produce a lower net contribution to the dipole
moment. This is not the case for τ = ∞; introducing inflows to the model
makes the transition from TQ to LQ slightly later in λR = 11.531◦. This can be
interpreted as τ = ∞; there is no decay term, the inflows contribute to the model,
and less flux cancellation occurs on the surface; this will provide more flux to the
active regions and, hence, increase the tilt angle, which makes TQ dominate a
little bit longer over LQ. This supports our previous result for the decay term’s
importance and gives evidence for our initial hypothesis that inflows might be
responsible for the tilt quenching.

4. Discussion

The presence of surface inflows in solar cycle modulation, represented by pertur-
bations to the meridional flow profile, reduces the different cycle characteristics.
Cameron and Schüssler (2012) show that the magnetic flux corresponding to the
axial dipole is reduced by applying strong inflows in an SFT model (Figure 2
therein). Martin-Belda and Cameron (2016) investigated the role of converging
flows towards a BMR in its evolution and their impact on the axial dipolar field,
they found that the latitudinal separation of the polarities of the bipolar region
is limited by the inflows, resulting in a reduction of the axial dipole moment of
the BMR, and hence, lowers the contribution of the emerged BMR to the axial
dipole moment.

Adding inflows to the model produces a polar field within ±σ of the polar
field of an average cycle. The correlation coefficients between the average cycle
polar field and the three mechanisms were relatively high, including inflows only
in the model, which gave a 0.76 correlation coefficient, and combined with LQ
and TQ, which showed a 0.85 correlation coefficient. The polar field fitting pa-
rameters for considering inflows only in the model show the largest percentage
of error, however, including LQ and TQ with the inflows showed a moderate
percentage of error, which led to a more balanced impact on the parameters.
This comes in agreement with the findings of Martin-Belda and Cameron (2017)
and Nagy, Lemerle, and Charbonneau (2020) where they show that including
inflows produces an alteration in the transportation of magnetic flux toward the
pole and this alteration leads to a reduction in the cross-equatorial cancellations
of BMRs and suppresses the effectiveness of the Babcock–Leighton process.

However, according to Nagy, Lemerle, and Charbonneau (2020), a reduction
of 10 – 20% in the strength of the global dipole as it forms towards the end
of a cycle compared to a scenario without inflows, this reduction was observed
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using a 2×2D Babcock–Leighton solar cycle model. Our simulation produced
close results to Nagy, Lemerle, and Charbonneau (2020) by comparing the net
contribution of a cycle to the solar dipolar moment with and without inflows in
the absence of LQ, as in Figure 4 for example, a 12.6 – 22.8% reduction in case of
v00 = −500 cm s−1 and 10.9 – 25.4% reduction for v00 = −750 cm s−1 using the
SFT models and depending on the parameter combination, overall, when τ = ∞
the reduction of the global dipole is less than the cases with τ = 8 years.

Using the surface inflow profile influenced by the total emerged magnetic
flux from the past cycle, Nagy, Lemerle, and Charbonneau (2020) adjusted the
width and speed of the inflow to be directly related to the emerging magnetic
flux, effectively transforming them into a valid nonlinear magnetic feedback
mechanism. Figure 6 shows the relative importance of LQ vs. inflows plotted
against the dynamo effectivity range, λR, for τ = 8, the relative importance of
LQ vs. inflows always dominated by the values for τ = ∞, which was the same of
the relative importance of LQ vs. TQ (as illustrated in Figure 4, paper 2). This
indicates that surface inflows are strongly affected by the presence of a decay
term regarding the initial inflow amplitude. As discussed earlier in Section 3, the
net flow will become convergent within a belt of half-width δλ0 centred on λ0,
and for strong diffusion, the escaped fraction of the flux from the convergent belt
f1 will increase, which means less flux escape cancellation f . This can be seen in
the devinflows values, which decrease with increasingly strong radial diffusion.
On the other hand, the evolved flux under the effect of large-scale meridional flow
and diffusion increases the latitude quenching mechanism, which can explain the
increase in devLQ with stronger diffusion.

Figure 6 shows the relative importance of LQ vs. inflows against λR; fits of
the form C1 +C2/λ

n
R were attempted, with different integer values for n, where

n = 2 was found to produce a reasonably good representation of the results. This
agrees with the results paper 2 for the relative importance of LQ vs. TQ, which
show similar behaviour, suggesting that LQ is dominant over surface inflows in
the absence of TQ. This similarity is illustrated in Figs. 7 and 8. However, the
relative importance of TQ vs. LQ is always greater than the relative importance
of LQ vs. inflows to λR, which implies that a fraction of the TQ nonlinearities
can be attributed to the inflow effects and also supports our hypothesis that
inflows might be responsible for TQ.

The relative importance of LQ vs. inflows for the different sets of parameters
(roughly between 0.2 and 1.6) was similar to the relative importance of LQ
vs. TQ. However, the relative importance of LQ vs. TQ is between 0 and 2,
with some negative values. Most of the SFT and dynamo models studied in the
recent literature (Bhowmik and Nandy 2018; Jiang and Cao 2018; Lemerle and
Charbonneau 2017; Whitbread et al. 2017), were in the range of 1 – 2. This
can be explained by examining the amplitude of the surface inflow; having inflow
amplitudes depending on the cycle amplitude means that we will have a lower
net contribution to the dipole moment (Figure 4), which results in higher inflows
deviations (devinflows), and the relative importance of LQ vs. inflows decrease.

The nonlinear relationship between the relative importance of LQ vs. inflows
to the dynamo effectivity range λR is evident as illustrated in Figure 6 for various
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combinations of parameters. The fitted lines demonstrate an inverse proportion-
ality between λR and the relative importance of LQ vs. inflows, as modelled by
Equation 11. This underscores the nonlinear nature of surface inflows as a truly
nonlinear mechanism.

An analysis using a paired t-test on the fitting parameters for both values
of v00 showed no significant differences. This indicates that varying the initial
amplitude of the inflow has only a minor effect on the importance of the inflows.

For lower values of λR, TQ dominates over LQ with and without including
surface inflows, by increasing λR gradually, a smooth transition for LQ to be
dominating the TQ. This come in agreement with paper 2, where it was shown
that when λR is small, LQ exhibits a greater reduction in the end-of-cycle axial
dipole than TQ and conversely, for large values of λR, TQ is more influential than
LQ in diminishing the end-of-cycle dipole. However, including inflows makes this
transition occur faster for τ = 8 yr. However, for no decay term (τ = ∞), TQ
dominate a little bit longer over LQ.

We reiterate that the parameter study in the present work is somewhat
limited. A much more comprehensive mapping of the parameter space for the
time-independent flow and transport parameters was performed by Petrovay and
Talafha (2019). The observational constraints applied in that study were based
on phase differences in the temporal variation of various measures of the solar
magnetic field. An interesting further possibility to constrain the parameters was
pointed out by Petrie (2023; 2024), who suggested that characteristic shapes of
the flux patterns originating from decaying active regions at higher latitudes may
serve as sensitive tests of the transport parameters. Exploiting these constraints
in a 2D flux transport model is one potential direction for a future extension of
this work.

5. Conclusion

In this study, we used the 1D surface flux transport model to study the effect of
nonlinear surface inflows into activity belts in solar cycle modulation. We used
a modified meridional flow perturbation profile presented byNagy et al. (2017)
to represent the surface inflows whose amplitudes vary within a cycle depending
on the magnetic activity.

Our results confirmed that introducing surface inflows into the solar dynamo
will provide a polar field within an average cycle polar field of ±1σ, and including
LQ and TQ together with inflows will give a more balanced impact on the
polar field. Results show that having inflows will decrease the strength of the
global dipole moment in the presence or absence of latitude quenching, and for
different allowed parameter combinations. Our model yielded results that closely
resemble those of the 2×2D dynamo model. A reduction of 10 – 25% was observed
depending on the chosen model parameters.

Including inflows into the model shows that the relative importance of LQ
vs. inflows is inversely correlated with the chosen parameters (u0, η, and τ) and
hence, on the dynamo effectivity range (λR), with lower values depending on the
initial amplitude of the surface inflow.
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When there is no decay term (τ=∞), the introduction of the inflows into
the model results in a less significant net contribution to the dipole moment. In
other words, a decay term is essential for the model.

For the used inflow profile, the anticipated modulation of the source was
expected to persist within the linear regions, similar to the TQ case. However,
relying on fitting to determine the significance of LQ vs. inflows suggests that
the assumption of a linear dependence of source modulation on cycle amplitude
is somewhat simplistic. This shows a possible nonlinear relationship between
the surface inflows and the solar dipole moment, suggesting a potential nonlin-
ear mechanism contributing to the saturation of the global dynamo within the
Babcock-Leighton framework.

TQ dominates over LQ for low λR, after that a transition for LQ gradually
dominates TQ, adding inflows gives an earlier transition of domination from TQ
to LQ. However, for no decay term, the transition will occur a little bit later.

A plausible further extension of this work would consider solar cycle scale
variation of the order of 2 m s−1 as the third near-surface meridional flow
component, in addition to the constant baseline flow profile and the variations
due to inflows around active regions.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Author Contribution M.T. led the investigation and drafted the majority of the manuscript,
K.P. played a key role in designing the experiment and enriching the discussion, and A.O.
meticulously reviewed the manuscript to refine its language and clarity.

Funding This research was supported partially by the Hungarian National Research, Devel-
opment and Innovation Fund (grant numbers NKFI FK-128548 and TKP2021-NKTA-64), as
well as by the European Union’s Horizon 2020 research and innovation programme (grant
no. 955620).

Data Availability No data have been produced during this work.

References

Babcock, H.W., Babcock, H.D.: 1955, The Sun’s Magnetic Field, 1952-1954. Astrophysical
Journal, vol. 121, p. 349 121, 349.

Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.: 2004, Evolution of the large-scale magnetic
field on the solar surface: a parameter study. A&A 426, 1075.

Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot cycle 25 reveal
decadal-scale space environmental conditions. Nat. Commun. 9, 5209. DOI. ADS.

Bhowmik, P., Jiang, J., Upton, L., Lemerle, A., Nandy, D.: 2023, Physical models for solar
cycle predictions. Space Sci. Rev. 219, 40.

Cameron, R., Schüssler, M.: 2010, Changes of the solar meridional velocity profile during cycle
23 explained by flows toward the activity belts. ApJ 720, 1030.

Cameron, R., Schüssler, M.: 2012, Are the strengths of solar cycles determined by converging
flows towards the activity belts? A&A 548, A57.

Cameron, R.H., Schüssler, M.: 2016, The turbulent diffusion of toroidal magnetic flux as
inferred from properties of the sunspot butterfly diagram. Astron. Astrophys. 591, A46.
DOI. ADS.

SOLA: main.tex; 7 April 2025; 0:31; p. 20

https://doi.org/10.1038/s41467-018-07690-0
https://ui.adsabs.harvard.edu/abs/2018NatCo...9.5209B
https://doi.org/10.1051/0004-6361/201527284
https://ui.adsabs.harvard.edu/abs/2016A&A...591A..46C


Effect of Surface Inflows
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